EXAM

Probabilité Avancée

Travail Ecrit Autumn Semester 2015 January 11 2016

Length of exam: 3h minutes

Permitted: no pages of personnel notes are allowed.

No calculation machines are allowed.

Please start each question on a fresh page.

Attempt all the questions

Any dishonesty will be severely sanctioned!

Write first your full name and section:

Name:	Given name :	
Departement :		

Exercice	Points
1	
2	
3	
4	
5	
Total points:	

- 1i) Define convergence in distribution for a sequence of random variables X_n and limit random variable X. Give two equivalent (and clearly distinct) equivalent conditions.
- (ii) If for distribution functions F_n and F, we have that $F_n(t) \to F(t) \, \forall t \in D$ a dense subset of \mathbb{R} , show that $F_n \stackrel{D}{\to} F$.
- (iii) What does it mean for probability measure μ to be the *law* of random variable X? If X_i are i.i.d. random variables with law μ and $\mu_n(\omega)$ s the random probability measure

$$\frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}.$$

Show that with probability one $\mu_n(\omega) \stackrel{D}{\to} \mu$.

2a) Let X_1, X_2, \ldots , be independent identically distributed r.v.s taking values in $\mathbb{N} \cup -1 \setminus \{0,1\}$, so that

$$\forall n \ge 2 \ P(X_1 = n) = \frac{C}{n^2 log^2(n)},$$

$$P(X_1 = -1) = 1 - \sum_{n} \frac{C}{n^2 log^2(n)};$$

where C is chosen so that $E(X_1) = 0$. We define $S_n = \sum_{i=1}^n X_i$. Show that

$$\frac{S_n}{n} \to 0,$$

in probability. Is it possible to extend this to a.s. convergence? Using the truncation at level $\frac{n}{\log^{3/2}(n)}$ or otherwise, show that

$$\frac{S_n}{n/log(n)} \to -C,$$

in probability. Is it possible to extend this to convergence a.s.? Justify. (You may use approximations of sums via corresponding integrals without proof.)

- 3i) Suppose that $X_n \stackrel{D}{\to} X$ and $Y_n \stackrel{D}{\to} Y$. Does $X_n + Y_n \stackrel{D}{\to} X + Y$? Repeat the question with convergence in distribution replaced by convergence in probability.
- (ii) For a metric space (E,d) we say that $X_n \stackrel{D}{\to} X$ for random elements in (E,d) if

$$E(g(X_n)) \to E(g(X))$$

for each bounded continuous function g on (E,d). Show that this implies that for every open set $O \subset E$

$$\liminf P(X_n \in O) \ge P(X \in O).$$

4) Let \mathcal{H} be the set of bounded continuous functions on \mathbb{R} . For any compact interval $I \subset \mathbb{R}$ of nonzero length, define

$$\phi_I:\mathcal{H}\to\mathbb{R}$$

by

$$\phi_I f = \sup_{y \in I} f(x).$$

- a) Let \mathcal{G} be the σ -field of subsets of \mathcal{H} generated by the applications of the form ϕ_I . What does this mean? Show that this is equipvalent to a simpler σ -field
- b) Let $g: \mathbb{R} \to \mathbb{R}$ be in \mathcal{H} . Define $F: (\mathbb{R}, \mathcal{B}) \to (\mathcal{H}, \mathcal{G})$ by

$$F(x)(y) = \sup_{z \in [y-|x|/2, y+|x|/2]} g(z).$$

Is F a mesurable function. Justify.

c) For random variables $X, X_n n = 1, 2, \cdots$ define intervals

$$I_n = [X_n - 1, X_n + 1], \quad I = [X - 1, X + 1].$$

What does ϕ_{I_n} converges point wise to ϕ_I a.s. mean? What does it imply for the given random variables. Can you find some $f \in \mathcal{H}$ so that $\phi_{I_n} f \to \phi_{[-1,1]} f$ implies X_n converges a.s. to zero. is this true for all $f \in \mathcal{H}$.

5) (i) Is the collection of subsets of \mathbb{R}^2 of the form

$$\{(x,y) : xa_1 + ya_2 \le c\}$$

a π -system? Justify.

(ii) For X_n i.i.d. U(0,1) random variables what are

$$\liminf_{n} n^{1/3} \max \{X_n, X_{n+1}, X_{n+2}\}$$

and

$$\liminf_{n} \log(n) n^{1/3} \max \{X_n, X_{n+1}, X_{n+2}\}.$$

(iii)Let X_n be independent random variables with X_n having distribution $N((-1)^n \frac{1}{n}, \frac{1}{n})$. Does $S_n = \sum_{I=1}^n X_i$ converge a.s. as n tends to infinity. Change the parameters to get X_n converging on probability but the answer is opposite to the first answer. The smaller the change the greater the points.